Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series

Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. values in the Meng-Rosenthal-Rubin method is available online (Li K-L, Zhu XP. http://lib.stat.cmu.edu/R/CRAN/src/contrib/Descriptions/compOverlapCorr.html). A significance level of 0.05 was used for all tests. For assessing the impact of using population VIF as opposed to individual VIFs on the relationship between SER and = 8) Fosfructose trisodium with parameters 1 min?1 (marked with arrows). Open in a separate window FIG. 6 Representative pixel-by-pixel scatterplots of SER vs. 1 min?1 (arrows). With use of the Meng-Rosenthal-Rubin = 0.0001). However, increased = 0.22, = 5). DISCUSSION This article presents a shortcut of the two-compartment pharmacokinetic model (19) that can be used in breast DCE-MRI studies. Using computer simulations, we demonstrated that 1) the signal differences between each of two postcontrast scans and the reference precontrast scan can form a ratio, SER, that tracks the CACR for scans with short TR (?(Fig. 4). This makes high FAs attractive if quantitative DCE-MRI is the main concern; however, at the expense of a lower contrast to noise ratio, given a short TR. Based on the computer simulation using the Ernst equation, the highest contrast between tumor (= [0.55, 1.65, 2.75, 14.85] min. Because of the rapid heart rate in mice, a is the proton density, is the flip angle, TR is the repetition time, and em R /em 1 is the spin-lattice relaxation rate ( em R /em 1 1/ em T /em 1). Substituting em R /em 1 in Eq. [A1] with em R /em 1 at the three acquisition timepoints, em R /em 10, em R /em 11, and em R /em 12, the signal intensity at the three timepoints can be calculated as: math xmlns:mml=”http://www.w3.org/1998/Math/MathML” display=”block” id=”M11″ overflow=”scroll” mrow msub mi S /mi mn 0 /mn /msub mo = /mo mi M /mi mo ? /mo mi sin /mi mi /mi mo ? /mo mfrac mrow mn 1 /mn mo ? /mo mi exp /mi mo ( /mo mo ? NEU /mo mi TR /mi mo ? /mo msub mi R /mi mn 10 /mn /msub mo ) /mo /mrow mrow mn 1 /mn mo ? /mo mi cos /mi mi /mi mo ? /mo mi exp /mi mo ( /mo mo ? /mo mi TR /mi mo ? /mo msub mi R /mi mn 10 /mn /msub mo ) /mo /mrow /mfrac /mrow /math math xmlns:mml=”http://www.w3.org/1998/Math/MathML” display=”block” id=”M12″ overflow=”scroll” mrow msub mi S /mi mn 1 /mn /msub mo = /mo mi M /mi mo ? /mo mi sin /mi mi /mi mo ? /mo mfrac mrow mn 1 /mn mo ? /mo mi exp /mi mo ( /mo mo ? /mo mi TR /mi mo ? /mo msub mi R /mi mn 11 /mn /msub mo ) /mo /mrow mrow mn 1 /mn mo ? /mo mi cos /mi mi /mi mo ? /mo mi exp /mi mo ( /mo mo ? /mo mi TR /mi mo ? /mo msub mi R /mi mn 11 /mn /msub mo ) /mo /mrow /mfrac /mrow /math and math xmlns:mml=”http://www.w3.org/1998/Math/MathML” display=”block” id=”M13″ overflow=”scroll” mrow msub mi S /mi mn 2 /mn /msub mo = /mo mi M /mi mo ? /mo mi sin /mi mi /mi mo ? /mo mfrac mrow mn 1 /mn mo ? /mo mi exp /mi mo ( /mo mo ? /mo mi TR /mi mo ? /mo msub mi R /mi mn 12 /mn /msub mo ) /mo /mrow mrow mn 1 /mn mo ? /mo mi cos /mi mi /mi mo ? /mo mi exp /mi mo ( /mo mo ? /mo mi TR /mi mo ? /mo msub mi R /mi mn 12 /mn /msub mo ) /mo /mrow /mfrac /mrow /math [A2] The signal enhancement at em t /em em p /em 1 is: math xmlns:mml=”http://www.w3.org/1998/Math/MathML” display=”block” id=”M14″ overflow=”scroll” mrow msub mi S /mi mn 1 /mn /msub mo ? /mo msub mi S /mi mn 0 /mn /msub mo = Fosfructose trisodium /mo mi M /mi mo ? /mo mi sin /mi mi /mi mo /mo mfrac mrow mo ( /mo mi exp /mi mo ( /mo mo ? /mo mi TR /mi mo ? /mo msub mi R /mi mn 11 /mn /msub mo ) /mo mo ? /mo mi exp /mi mo ( /mo mo ? /mo mi TR /mi mo ? /mo msub mi R /mi mn 10 /mn /msub mo ) /mo mo ) /mo mo ( /mo mi cos /mi mi /mi mo ? /mo mn 1 /mn mo ) /mo /mrow mrow mo ( /mo mn 1 /mn mo ? /mo mi cos /mi mi /mi mo ? /mo mi exp /mi mo ( /mo mo ? /mo mi TR /mi mo ? /mo msub mi R /mi mn 11 /mn /msub mo ) /mo mo ) /mo mo ( /mo mn 1 /mn mo ? /mo mi cos /mi mi /mi mo ? /mo mi exp /mi mo ( /mo mo ? /mo mi TR /mi mo ? /mo msub mi R /mi mn 10 /mn /msub mo ) /mo mo ) /mo /mrow /mfrac /mrow /math [A3] Similarly, the signal enhancement at em t /em em p /em 2 is: math xmlns:mml=”http://www.w3.org/1998/Math/MathML” display=”block” id=”M15″ overflow=”scroll” mrow msub mi S /mi mn 2 /mn /msub mo ? /mo msub mi S /mi mn 0 /mn /msub mo = /mo mi M /mi mo ? /mo mi sin /mi mi /mi mo /mo mfrac mrow mo ( /mo mi exp /mi mo ( /mo mo ? /mo mi TR /mi mo ? /mo msub mi R /mi mn 12 /mn /msub mo ) /mo mo ? /mo mi exp /mi mo ( /mo mo ? /mo mi TR /mi mo ? /mo msub mi R /mi mn 10 /mn /msub mo ) /mo mo ) /mo mo ( /mo mi cos /mi mi /mi mo ? /mo mn 1 /mn mo ) /mo /mrow mrow mo ( /mo mn 1 /mn mo ? /mo mi cos /mi mi /mi mo ? /mo mi exp /mi mo ( /mo mo ? /mo mi TR /mi mo ? /mo msub mi R /mi mn 12 /mn /msub mo ) /mo mo ) /mo mo ( /mo mn 1 /mn mo ? /mo mi cos /mi mi /mi mo ? /mo mi exp /mi mo ( /mo mo ? /mo mi TR /mi mo ? /mo msub mi R /mi mn 10 /mn /msub mo ) /mo mo ) /mo /mrow /mfrac /mrow /math [A4] The ratio of signal enhancement at the two points is: math xmlns:mml=”http://www.w3.org/1998/Math/MathML” display=”block” id=”M16″ overflow=”scroll” mrow mfrac mrow msub mi S /mi mn 1 /mn /msub mo ? /mo msub mi S /mi mn 0 /mn /msub /mrow mrow msub mi S /mi mn 2 /mn /msub mo ? /mo msub mi S /mi mn 0 /mn /msub /mrow /mfrac mo = /mo mfrac mrow mi exp /mi mo ( /mo mo ? /mo mi TR /mi mo ? /mo msub mi R /mi mn 11 /mn /msub mo ) /mo mo ? /mo mi exp /mi mo ( /mo mo ? /mo mi TR /mi mo ? /mo msub mi R /mi mn 10 /mn /msub mo ) /mo /mrow mrow mi exp /mi mo ( /mo mo ? /mo mi TR /mi mo ? /mo msub mi R /mi mn 12 /mn /msub mo ) /mo mo ? /mo mi exp /mi mo ( /mo mo ? /mo mi TR /mi mo ? /mo msub mi R /mi mn 10 /mn /msub mo ) /mo /mrow /mfrac mo ? /mo mfrac mrow mn 1 /mn mo ? /mo mi cos /mi mi /mi mo ? /mo mi exp /mi mo ( /mo mo ? /mo mi TR /mi mo ? /mo msub mi R /mi mn 12 /mn /msub mo ) /mo /mrow mrow mn 1 /mn mo ? /mo mi cos /mi mi /mi mo ? /mo mi exp /mi mo ( /mo mo ? /mo mi TR /mi mo ? /mo msub mi R /mi mn 11 /mn /msub mo ) /mo /mrow /mfrac /mrow /math [A5] For a short TR typically used for rapid acquisition and a low dose (0.1 mmol/kg) of Gd-DTPA administration, it can be assumed that TR ? em T /em 1; therefore, exp(-TR em R /em 1) 1-TR em R /em 1. Eq. [A5] can be rewritten as: math xmlns:mml=”http://www.w3.org/1998/Math/MathML” display=”block” id=”M17″ overflow=”scroll” mrow mfrac mrow msub mi S /mi mn 1 /mn /msub mo ? /mo msub mi S /mi mn 0 /mn /msub /mrow mrow msub mi S /mi mn 2 /mn /msub mo ? /mo msub mi S /mi mn 0 /mn /msub /mrow /mfrac mo = /mo mfrac mrow msub mi R /mi mn 11 /mn /msub mo ? /mo msub mi R /mi mn 10 /mn /msub /mrow mrow msub mi R /mi mn 12 /mn /msub mo ? /mo msub mi R /mi mn 10 /mn /msub /mrow /mfrac mo ? /mo mfrac mrow mn 1 /mn mo ? /mo mi cos /mi mi /mi mo + /mo mi cos /mi mi /mi mo ? /mo mi TR /mi mo ? /mo msub mi R /mi mn 12 /mn /msub /mrow mrow mn 1 /mn mo ? /mo mi cos /mi mi /mi mo + /mo mi cos /mi mi /mi mo ? /mo mi TR /mi mo ? /mo msub mi R /mi mn 11 /mn /msub /mrow /mfrac /mrow /math [A6] Remembering that em C(tp /em 1) = ( em R /em 11 ? em R /em 10)/ ?1 and em C(tp /em 2) = ( em R /em 12 ? em R /em 10)/ ?1, where ?1 is em T /em 1 relaxivity of Gd-DTPA, SER in tissues can therefore be expressed as: math xmlns:mml=”http://www.w3.org/1998/Math/MathML” display=”block” id=”M18″ overflow=”scroll” mrow mi SER /mi mo = /mo mfrac mrow msub mi S /mi mn 1 /mn /msub mo ? /mo msub mi S /mi mn 0 /mn /msub /mrow mrow msub mi S /mi mn 2 /mn /msub mo ? /mo msub mi S /mi mn 0 /mn /msub /mrow /mfrac mo = /mo mfrac mrow mi C /mi mo ( /mo msub mi t /mi mrow mi p /mi mn 1 /mn /mrow /msub mo ) /mo /mrow mrow mi C /mi mo ( /mo msub mi t /mi mrow mi p /mi mn 2 /mn /mrow /msub mo ) /mo /mrow /mfrac mo ? /mo mfrac mrow mn 1 /mn mo ? /mo mi cos /mi mi /mi mo + /mo mi cos /mi mi /mi mo ? /mo mi TR /mi mo ? /mo msub mi R /mi mn 12 /mn /msub /mrow mrow mn 1 /mn mo ? /mo mi cos /mi mi /mi mo + /mo mi cos /mi mi /mi mo ? /mo mi TR /mi mo ? /mo msub mi R /mi mn 11 /mn /msub /mrow /mfrac /mrow /math [A7] By defining a factor, em A /em , as SER/CACR, where CACR em C(tp /em 1)/ em C(tp /em 2), we can rewrite Eq. [A7] as: math xmlns:mml=”http://www.w3.org/1998/Math/MathML” display=”block” id=”M19″ overflow=”scroll” mrow mi A /mi mo = /mo mfrac mi SER /mi mi CACR /mi /mfrac mo = /mo mfrac mrow mn 1 /mn mo ? /mo mi cos /mi mi Fosfructose trisodium /mi mo + /mo mi cos /mi mi /mi mo ? /mo mi TR /mi mo ? /mo mo ( /mo msub mi R /mi mn 10 /mn /msub mo + /mo mi C /mi mo ( /mo msub mi t /mi mrow mi p /mi mn 2 /mn /mrow /msub mo ) /mo mo ? /mo mo ? /mo mn 1 /mn mo ) /mo /mrow mrow mn 1 /mn mo ? /mo mi cos /mi mi /mi mo + /mo mi cos /mi mi /mi mo ? /mo mi TR /mi mo ? /mo mo ( /mo msub mi R /mi mn 10 /mn /msub mo + /mo mi C /mi mo ( /mo msub mi t /mi mrow mi p /mi mn 1 /mn /mrow /msub mo ) /mo mo ? /mo mo ? /mo mn 1 /mn mo ) /mo /mrow /mfrac mo . /mo /mrow /math [A8] REFERENCES 1. Collins DJ, Padhani AR. Dynamic magnetic resonance imaging of tumor perfusion. Approaches and biomedical challenges. IEEE Eng Med Biol Mag. 2004;23:65C83. [PubMed] [Google Scholar] 2. Knopp MV, Brix G, Junkermann HJ, Sinn HP. MR mammography with pharmacokinetic mapping for monitoring of breast cancer treatment during neoadjuvant therapy. Magn Reson Imaging Clin N Am. 1994;2:633C658. [PubMed] [Google Scholar] 3. Tofts P, Berkowitz B, Schnall M. Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumours using a permeability model. Mag Res Med. 1995;33:564C568. [PubMed] [Google Scholar] 4. den Boer JA, Hoenderop RK, Smink J, Dornseiffen G, Koch PW, Mulder JH, Slump CH, Volker ED, de Vos RA. Pharmacokinetic analysis of Gd-DTPA enhancement in dynamic three-dimensional MRI of breast lesions. J Magn Reson Imaging. 1997;7:702C715. [PubMed] [Google Scholar] 5. Mussurakis Fosfructose trisodium S, Buckley DL, Drew PJ, Fox JN, Carleton PJ, Turnbull LW, Horsman A. Dynamic MR imaging of the breast combined with analysis of contrast agent kinetics in the differentiation of primary breast tumours. Clin Radiol. 1997;52:516C526. [PubMed] [Google Scholar] 6. Issa B, Buckley DL,.